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1 Introduction

The Mars Orbiter Laser Altimeter (MOLA) instrument on the
Mars Global Surveyor orbiter has produced a large volume of
topography data in which craters are prominently displayed.
Figure 1 shows a small example of such a topography dataset.
The current state-of-the-art in crater identification and charac-
terization is a summer intern manually scrutinizing topography
images. Such a labor-intensive approach is susceptible to be-
ing overwhelmed by the sheer volume of data returned by
current and future missions. Automation of the crater cata-
loging process is a necessary to make full use of the extensive
topography datasets available.

The Cratermatic topography analysis program (1) was
developed to meet this need. Cratermatic performs a multi-
step process to

• identify approximate crater centers

• determine the full extent of each crater candidate

• eliminate many false-positive identifications

• catalog basic characteristics of the identified craters

Application ofCratermatic to various sample datasets pro-
duces results which compare favorably with previous crater lo-
cating routines (2), while providing a basis for more in-depth
characterization of each crater.

Figure 1: A small elevation dataset

Figure 2: Radius 20 C-Transform of the Figure 1 dataset

2 Approximating crater locations

Craters come in all sizes, often with smaller craters nested
inside larger craters. By first searching for smaller craters
(typically about 5 pixels radius in the topography data) then
proceeding to successively larger craters in subsequent steps,
the Cratermatic routine avoids the difficulty of simultaneously
identifying nested craters.

Suppose the topography landscape of a region S ⊂ R2 is
described by the differentiable function z : S → R. On an
ideal landscape, each local minima of z would be the center of
one crater. For real data, however, most local minima are not
craters and most craters contain several local minima.

For an ideal crater, the gradient !∇z is strongest on the
crater rim and points outward from the center. Thus, to find
the center of craters with a radius of approximately r, we look
for locations "pointed away from" by the gradient within a
radius ∼ r. This motivates the crater-finding transform (C-
Transform)
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Craters with radii near r will produce local minima in the
transformed surfaceC◦z. The C-Transform behaves similarly
to a Gaussian convolution, insofar as it smoothes out features
smaller than the characteristic size r. The C-Transform also
suppresses low-frequency components in the image, leveling
out any slowly changing background gradients. As a result,
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Figure 3: Upward-concave regions (white areas) of the radius
20 C-Transform (Figure 2)

a crater of the appropriate size creates a smooth, pronounced
basin in the transform surface. These basins provide a starting
point for the Cratermatic search process. Figure 2 shows
the 20 pixel radius C-Transform of the Figure 1 topography
dataset.

3 Determining crater extents

Using the C-Transform as a guide for where to look, the ac-
tual extent of each crater must be determined. First, the C-
Transform is used to approximate the area covered by the
crater. The approximated area provides sufficient statistics
about the character of the crater for the precise extent to be
determined from the elevation data.

The approximate crater regions are determined from the
upward-concave basins in the C-Transform. Concavity is de-
termined by calculating the discrete second derivative along
four lines through each point in the C-Transform image; those
points with positive second derivatives in all four directions
are considered to be upward-concave. Figure 3 shows the con-
cavity determination applied to the radius 20 C-Transform of
Figure 2.

In practice, these upward convex "crater core" regions tend
to cover the actual crater region to about half-way up the crater
walls. A core region thus contains enough of the crater tomake
a rough estimate of the crater wall’s slope. Knowing approx-
imately what to look for based on the topography contained
in the core region, each core region is expanded outward to
include the entire interior of the crater. Figure 4 shows the
expanded regions based on the core regions of Figure 3.

Figure 4: Regions of Figure 3 expanded to cover whole crater

4 Characterizing crater regions

The expanded regions from the preceding step are a mixture
of actual craters and false-positive identifications. The tasks
of characterizing the actual craters and eliminating the false-
positive regions are carried on simultaneously.

One fundamental characteristic of a crater is the shape of
the above determined area. To first order, this is a circle, but
many craters are significantly elliptical. Let U ⊂ R2 denote
the region covered by the crater. We may define the center of
the crater by the "center of mass" of U , !c =
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. Since
the crater’s shape is convex, or at least starlike about!c, we can
describe the shape by its radius as a function of angle around
!c, r(θ). Writing r(θ) as a Fourier series,
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The terms r0, a2, and b2 provide a good second-order
description of crater shape (a1 ≈ b1 ≈ 0 due to the choice
of !c for the center). Large values for the higher coefficients
indicate a lumpy, irregular shape that can be eliminated from
the list of crater candidates.

The same approach may be applied to the crater gradient
by writing the average gradient !g as a function of angle θ
around the center point!c in terms of a Fourier series,
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Figure 5: Identified craters from the Figure 1 dataset, with
outlines generated from the first 6 terms in the series for r(θ)
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For an ideal crater, b1 and c1 are the dominant coefficients,
while b0x̂ + d0ŷ gives the average background slope for the
crater region. Large magnitudes for other coefficients indicate
non-crater regions.

False-positive regions are identified by un-craterlike co-
efficients in the r(θ) and !g(θ) series, and are removed from
the final list of craters. Figure 5 shows the final result of run-
ning Cratermatic on the Figure 1 dataset, which combines the
craters found for C-Transforms with radii of 5, 10, 20, and 40
pixels.

5 Findings and future work

The present Cratermatic algorithm leaves much room for im-
provement. All but the most marginal craters seem to be
represented at the C-Transform basin stage, but so are a vast
number of false positive identifications. The current crater core
expansion method is suitable for well-formed, isolated craters,
but is not robust for craters with highly variable wall slopes or
adjoining, external slope features. The choice of appropriate
criteria for discerning false positives from craters needs more
study and refinement. After removing the false positives, the
crater regions should be further expanded to encompass any
outward-sloping rim edge, to allow determination of the height
of the crater rim above the surrounding ground level.
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